基于多源信息融合的巡飞弹对地目标识别与毁伤评估

2024-03-11 2573阅读

自:系统仿真学报

作者:徐艺博  于清华  王炎娟 郭策  冯世如 卢惠民

面向利用多枚巡飞弹对地面高防御移动目标进行打击的任务场景,提出一种基于多源信息融合的巡飞弹对地移动目标识别与毁伤评估方法。基于IoU判定实现红外图像与可见光图像的多源信息融合;提出一种基于YOLO-VGGNet的两阶段紧耦合的巡飞弹对地移动目标毁伤评估方法,利用卷积神经网络深度语义信息提取的优势,引入红外毁伤信息,实现对地面移动目标的在线实时毁伤评估。实验结果表明:基于多源信息融合的目标识别算法有效提升了巡飞弹对地面移动目标识别的有效性;基于YOLO-VGGNet的在线实时毁伤等级评估方法较传统基于图像变化检测与基于两阶段卷积神经网络的方法评估准确率分别提升19%和10.25%。

关键词

 多源信息融合, 毁伤评估, 卷积神经网络, YOLO-VGGNet, 在线实时评估

引言

现代战争中,分布式、集群化、协同化作战方兴未艾,面对具有高目标价值和强防御能力的敌方目标威胁,与单枚导弹相比,利用导弹集群进行智能化协同作战,可以提高体系突防能力、感知探测能力和目标打击饱和度,但同时也对导弹自身环境观测和目标状态感知能力提出了新的挑战[1]。面对具有高防御能力的敌方目标威胁,单枚导弹可能无法有效摧毁,需要使用多枚导弹进行联合打击。对受打击后的目标进行毁伤评估不仅可以节省弹药、确定目标打击优先级,而且还可以实现对地面目标的饱和式攻击,客观评价战场态势[2-3]。本文以巡飞弹组成的弹群为研究背景,巡飞弹是集无人机与导弹优势的察打一体化小型智能弹药,弹群在执行任务时,每个节点基于自身弹载传感器,对地面目标进行位置与状态的感知,并基于弹间通信机制进行不同节点的信息交互。

基于图像对地面目标进行毁伤评估一直是军事智能感知领域的重难点问题,其核心是分析评估方法。除人工判读外,主要有贝叶斯网络法[4]、主成分分析法(PCA)[5]、模糊综合评判法[6]、神经网络分析法等。基于贝叶斯网络的评估方法多采用机器判读,可以综合各种不同类型的信息,具有评估时间短,对不确定性问题定量分析的优点。田福平等[7]利用贝叶斯网络在非精确知识表达与推理领域的优势,综合考虑目标价值、打击难度、打击效果等因素,对目标进行整体作战效果的评估;马晓明等[8]利用贝叶斯网络在不确定性问题上的计算优势,运用GeNle软件建立了目标毁伤效果评估的贝叶斯网络,对目标舰船毁伤效果进行推理评估;杨凯达[9]基于加入毁伤时间流的动态贝叶斯网络有效克服了传统方法的主观性和不确定性,评估准确率得到较大提升,适用于战时精准目标的毁伤效果评估。尽管贝叶斯方法能够对不确定性问题进行定量分析,但它们往往不能利用人的经验知识,无法抓住问题的主要矛盾。

PCA主要采用降维的思想,把图像中复杂的特征表示转化为少数评价指标,作为衡量图像变化程度的特征量[10]。Li等[11]将PCA与合成孔径雷达(SAR)多纹理特征提取的优势相结合,减少数据计算量,评估地面建筑物的毁伤程度;Wu等[12]将PCA与卷积映射网络相结合,实现不同时间段高分辨率图像的变化检测;Osama等[13]提出一种改进的PCA-NLM(nonlocal means)方法,用于不同时间段SAR图像的城市发展变化检测。基于PCA的评估方法可以有效减轻数据处理量并抓住主要矛盾,但抗干扰性较差,易受地面其他变化因素的影响。

传统基于图像变化检测的毁伤评估方法主要针对固定的地面目标(建筑、桥梁、机场) [14],一般分为3个步骤:①对打击前后图像进行配准;②检测受打击的目标区域;③基于图像变化检测对目标毁伤效果进行评估,本质上是“特征提取”问题,需要使用多种图像处理算法,如图像预处理、图像配准、图像辐射校正等,这就不可避免地引入多重误差。固定目标图像变化检测的关键在于打击前后图像的高精度配准,与固定目标不同的是,地面移动目标在执行任务时,时刻处于运动状态,目标受打击并不意味着运动能力的丧失。传统方法往往依赖后方的控制中心,无法仅基于巡飞弹的自身硬件资源进行在线图像处理,考虑信息传递与图像处理造成的时空滞后性,无法满足弹群实际的作战需求[15]。因此,巡飞弹对地面移动目标的识别与毁伤评估应当是实时且在线的,传统基于图像变化检测的毁伤评估方法并不适用于地面移动目标。同时,被攻击目标由于其特殊性与保密性,数量较少且难以获取,这都对基于弹群作战的毁伤评估研究造成很大困难。

卷积神经网络(CNN)在图像领域取得了很大的成功,特别是在目标检测分类领域,在一些大型数据集的测试中,深度卷积神经网络的识别率早已超过人类[16]。基于神经网络方法的优势是可以通过大量数据的学习,提取深层次的语义特征,而不仅是物理、像素空间特征,并且满足在线实时要求。因此,大量基于神经网络的毁伤评估研究也不断涌现。余丽山等[17]基于BP神经网络突出的非线性映射能力和柔性的网络结构对飞机的抗毁能力进行评估;张宗腾等[18]基于改进的GA-BP神经网络对飞机系统各部件的毁伤程度进行评估,提升了模型的泛化能力和全局寻优能力;Shen等[19]使用卫星图像,基于改进的BDANet网络结构充分利用CNN语义特征提取的优势对地面建筑进行毁伤评估,取得了较好的评估效果;Sarath等[20]采用Mask-RCNN神经网络对道路交通中的车辆擦伤区域进行毁伤评估,减轻了车辆保险公司人员的工作量。

上述基于单阶段神经网络的方法虽然可以提取目标的深度语义信息,但是当面对大量需要处理的图像时,并非每一张图片都需要细致的评估,因为对每一帧图像都进行细致的评估是十分耗时的。且单阶段评估方法不适用于地面移动目标的评估,在图像中识别出目标所在区域的同时对区域中的目标进行毁伤评估是不现实的。部分研究者提出两阶段神经网络评估方法,先采用一个轻量化的网络进行粗略评估来判断是否需要进一步处理。Alqahtani等[21]针对机械结构损坏的问题,设计了一个两阶段毁伤评估网络,该网络由两个子神经网络构成,分别检测目标结构是否受损以及受损程度,有效提升了评估的准确率与计算效率;Xu等[22]提出一种两阶段屋顶受损评估方法,用于评估台风后屋顶的受损程度,两个子神经网络分别用于评估房屋是否受损以及受损程度。

虽然基于两阶段神经网络的评估方法可以充分利用CNN深度语义信息提取的优势,同时满足实时在线条件,提升评估的准确率和效率,但仅是针对单一的目标类型,两网络之间的联系仅基于第1个子网络的先验分类信息。如果仅基于第2个子神经网络对多种类型目标进行毁伤评估,神经网络难免会混淆不同目标的毁伤特征,比如,火焰对军帐来说是致命的,而对于坦克却无关紧要。Tang等[23]针对特定类别的目标,训练相应的毁伤评估模型,将两个神经网络进行串联,第1个网络用于区分不同的自然灾害类型,第2个网络基于第1个网络的先验分类信息采用相应自然灾害的评估模型进行毁伤评估。虽然实现了不同目标毁伤程度的评估,但两网络之间的联系依然很弱,仅是自然灾害的分类信息。对地面移动目标的毁伤评估与自然灾害不同,不仅需要有目标分类信息,还要包含目标位置信息,同时为避免不同目标毁伤特征的相互影响,最好可以将不同目标类别分别进行评估。

为解决以上问题,本文提出一种基于YOLO-VGGNet的双阶段紧耦合的对地目标识别与毁伤评估方法,充分利用CNN对目标高级语义信息提取和检测框尺度变化的优势,更好地提取目标毁伤特征,有效排除战场浓烟、火花、弹坑的影响,同时避免不同目标毁伤特征的相互干扰,满足弹群作战的在线实时要求,提高了巡飞弹对地目标毁伤状态评估的准确率和效率。

1 基于多源信息融合的对地目标识别

巡飞弹对感知的RGB图像与红外图像进行实时的特征提取,并将识别框进行叠加,基于IoU判定进行信息融合。将符合判定条件的识别框输入VGG系列网络中,同时引入红外毁伤信息进行毁伤等级的评估,流程如图1所示。

基于多源信息融合的巡飞弹对地目标识别与毁伤评估 第1张

图1   弹群节点对地目标识别与毁伤评估流程图

1.1 YOLO v3检测可见光图像目标

由于地面目标时刻处于运动状态,本文采用YOLO v3在线实时地对可见光图像中的目标进行检测、分类与定位。G 为输入RGB图像,YOLO v3网络可表示为

基于多源信息融合的巡飞弹对地目标识别与毁伤评估 第2张

(1)

式中:θweight 为网络的权重参数;Gn 为RGB图像中包含目标的图像小块,主要有识别框位置信息Pm=[xm,ym,wm,hm] 、目标的种类Cm 、目标的置信度Qm 。网络的损失函数为

基于多源信息融合的巡飞弹对地目标识别与毁伤评估 第3张

(2)

式中:Lconfi 为置信度误差;Lclass 为目标类别误差;Lcoord 为坐标预测误差,它们分别负责对目标进行检测、分类与定位。

基于多源信息融合的巡飞弹对地目标识别与毁伤评估 第4张

(3)

式中:λcoord 为坐标误差权重;S2 为输入图像划分的网格数;B 为每个方格生成的先验框;

基于多源信息融合的巡飞弹对地目标识别与毁伤评估 第5张

为第i 个方格的第j 个先验框是否对该目标负责。如果是,则

基于多源信息融合的巡飞弹对地目标识别与毁伤评估 第6张

为1,否则为0;

基于多源信息融合的巡飞弹对地目标识别与毁伤评估 第7张

 为目标框真值,分别代表目标的x 与y 方向位置、识别框的宽与高。Lcoord 越小,说明识别框定位越准确。

在仿真场景中收集包含不同毁伤状态的4种军事目标图像:坦克、雷达、补给车、军帐共1 250张图片,为加快训练速度,采用Darknet53标准预训练权重,训练过程中,学习率为0.001,批处理大小为8,训练100个周期。

1.2 红外特征提取

巡飞弹在接收到红外图像之后,先将图像转化为灰度图,增加灰度等级滤波器,将灰度划分为17个等级,对应0~255中15的倍数,设置处于每一灰度区间的灰度值等于该等级的最高值,以此突出灰度图像的层次感。将红外图像的检测强度按图像灰度值划分为3个层级:强辐射(灰度值>180)、中等辐射(90


    免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

    目录[+]