机器人路径规划:基于斑翠鸟优化算法(Pied Kingfisher Optimizer ,PKO)的机器人路径规划(提供MATLAB代码)

2024-03-25 2717阅读

一、机器人路径规划介绍

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。目前,常用的移动机器人全局路径规划方法很多,如栅格法和人工势场法。对于栅格法,当空间增大时,所需存储空间剧增,决策速度下降;而人工势场法容易产生局部最优解问题和死锁现象。随着智能控制技术的发展,出现了如遗传算法算法、粒子群优化算法、麻雀搜索算法、灰狼优化算法、鲸鱼优化算法等。

参考文献:

[1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报, 2014, 45(6):5.DOI:CNKI:SUN:NYJX.0.2014-06-009.

[2]朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人, 2005, 27(2):5.DOI:10.3321/j.issn:1002-0446.2005.02.008.

[3]曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学, 2020, 42(3):7.DOI:CNKI:SUN:JSJK.0.2020-03-027.

二、栅格地图环境搭建

首先建立移动机器人工作环境,设移动机器人的工作空间为二维空间(记为RS),工作环境中的障碍物即为机床。在机器人运动过程中,障碍物为静止且大小不发生变化。按栅格法划分RS,移动机器人在栅格间行走。无障碍物的栅格为可行栅格,有障碍物的栅格为不可行栅格。栅格集包含所有栅格。栅格标识有:直角坐标法和序号法。本文采用序号标识法。

在移动机器人工作空间下按从左到右,从上到下的顺序,依次标记为序号1,2,3,···,n,每一个序号代表一个栅格。为了避免移动机器人与障碍物发生碰撞,可以将障碍物膨胀,障碍物在占原有栅格的同时,再占多个栅格,按 个栅格算。这种划分方法简单实用,能够满足环境模型与真实情况相符。从而使移动机器人在路径规划时畅通无阻。令S={1,2,3,···,N}为栅格序号集。根据上述对应关系,可知g(0,0)的序号为1,g(1,0)序号为2,直至g(X,Y)的序号为n。规划起始位置、目标位置均为任意且都属于S(但不在同一栅格内)。

在实际工作环境中,移动机器人工作环境是复杂多变的,且为三维空间。为了便于研究,本文对环境进行简化建模。栅格法是一种常用的环境表示方法,因其简单方便(二维环境),环境建模的复杂性小,因而本文环境建模采用栅格法。在栅格地图中,工作环境被划分为很多栅格,其中包括有障碍物和无障碍的栅格,在仿真程序中用0表示此栅格无障碍物,机器人可以通过此栅格,用1表示栅格有障碍物,机器人无法通过,需选择其他栅格。栅格的尺寸大小可根据工作环境中的障碍物尺寸以及安全距离进行设置。为了实现程序仿真,需要对栅格进行标识,如下图所示,以20x20的栅格环境为例来说明。

机器人路径规划:基于斑翠鸟优化算法(Pied Kingfisher Optimizer ,PKO)的机器人路径规划(提供MATLAB代码) 第1张

如上图所示,白色栅格表示无障碍物的栅格,黑色栅格则表示有障碍物的栅格,在地图中对每个栅格编号,不同序号的栅格在坐标系中的坐标可用下式来表示:

x=mod(Ni/N)-0.5

y=N-ceil(Ni/N)+0.5

其中,mod为取余运算,ceil表示向后取整,Ni是对应栅格的标号,N表示每 列的栅格数量,取栅格中心位置作为栅格在坐标系中的坐标。这样机器人全局路径规划的问题就转变成了利用算法在栅格地图上寻找由起始点到目标点的有序的栅格子集,这些栅格子集的中心连线便是算法寻找的路径。

参考文献:

[1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报, 2014, 45(6):5.DOI:CNKI:SUN:NYJX.0.2014-06-009.

[2]曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学, 2020, 42(3):7.DOI:CNKI:SUN:JSJK.0.2020-03-027.

三、斑翠鸟优化算法

https://blog.csdn.net/weixin_46204734/article/details/136415028

斑翠鸟优化算法(Pied Kingfisher Optimizer ,PKO),是由Abdelazim Hussien于2024年提出的一种基于群体的新型元启发式算法,它从自然界中观察到的斑翠鸟独特的狩猎行为和共生关系中汲取灵感。PKO 算法围绕三个不同的阶段构建:栖息/悬停猎物(探索/多样化)、潜水寻找猎物(开发/集约化)和培养共生关系。这些行为方面被转化为数学模型,能够有效地解决不同搜索空间中的各种优化挑战。

斑翠鸟是一种美丽的鸟类,属于翠鸟科。它们主要分布在东南亚地区,包括马来西亚、泰国、印度尼西亚等国家。斑翠鸟的身体呈蓝色,头部有黑色的斑点,翅膀和尾巴也呈蓝色。它们的嘴长而尖,适合捕食小型水生动物。斑翠鸟是一种喜欢栖息在水边的鸟类,常常出现在河流、湖泊和沼泽等水域附近。它们以鱼类为主要食物,通过潜水捕食来获取食物。斑翠鸟在捕食时会从栖息地上方的树枝上俯冲下去,迅速抓住猎物后返回树枝上进食。

参考文献:

[1]Pied Kingfisher Optimizer: A new bio-inspired algorithm for solving numerical optimization and industrial engineering problems

四、斑翠鸟优化算法求解机器人路径规划

4.1部分代码

%% 
S = [1 1];   %起点
E = [20 20];  %终点
[ub,dimensions] = size(G);        
dim = dimensions - 2;             
%% 参数设置
Max_iter= 500;    % 最大迭代次数
SearchAgents_no = 50;         % 种群数量
X_min = 1;  
lb=1;
fobj=@(x)fitness(x);
[Best_score,Best_NC,Convergence_curve]=PKO(SearchAgents_no,Max_iter,lb,ub,dim,fobj);
toc
%% 结果分析
global_best = round(Best_NC);
figure(1)
plot(Convergence_curve,'r-','linewidth',2.5)
xlabel('Iteration');
ylabel('Fitness');
legend('PKO')

4.2部分结果

机器人路径规划:基于斑翠鸟优化算法(Pied Kingfisher Optimizer ,PKO)的机器人路径规划(提供MATLAB代码) 第2张

机器人路径规划:基于斑翠鸟优化算法(Pied Kingfisher Optimizer ,PKO)的机器人路径规划(提供MATLAB代码) 第3张

五、完整MATLAB代码

机器人路径规划:基于斑翠鸟优化算法(PKO)的机器人路径规划(MATLAB代码)


    免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

    目录[+]