【Flink 核心篇】Flink 的八种分区策略(源码解读)
Flink 的八种分区策略(源码解读)
- 1.继承关系图
- 1.1 接口:ChannelSelector
- 1.2 抽象类:StreamPartitioner
- 1.3 继承关系图
- 2.分区策略
- 2.1 GlobalPartitioner
- 2.2 ShufflePartitioner
- 2.3 BroadcastPartitioner
- 2.4 RebalancePartitioner
- 2.5 RescalePartitioner
- 2.6 ForwardPartitioner
- 2.7 KeyGroupStreamPartitioner
- 2.8 CustomPartitionerWrapper
Flink 包含 8 种分区策略,这 8 种分区策略(分区器)分别如下面所示,本文将从源码的角度解读每个分区器的实现方式。
- GlobalPartitioner
- ShufflePartitioner
- RebalancePartitioner
- RescalePartitioner
- BroadcastPartitioner
- ForwardPartitioner
- KeyGroupStreamPartitioner
- CustomPartitionerWrapper
1.继承关系图
1.1 接口:ChannelSelector
public interface ChannelSelector { /** * 初始化channels数量,channel可以理解为下游Operator的某个实例(并行算子的某个subtask). */ void setup(int numberOfChannels); /** *根据当前的record以及Channel总数, *决定应将record发送到下游哪个Channel。 *不同的分区策略会实现不同的该方法。 */ int selectChannel(T record); /** *是否以广播的形式发送到下游所有的算子实例 */ boolean isBroadcast(); }
1.2 抽象类:StreamPartitioner
public abstract class StreamPartitioner implements ChannelSelector, Serializable { private static final long serialVersionUID = 1L; protected int numberOfChannels; @Override public void setup(int numberOfChannels) { this.numberOfChannels = numberOfChannels; } @Override public boolean isBroadcast() { return false; } public abstract StreamPartitioner copy(); }
1.3 继承关系图
2.分区策略
2.1 GlobalPartitioner
该分区器会将所有的数据都发送到下游的某个算子实例(subtask id = 0)。
/** * 发送所有的数据到下游算子的第一个task(ID = 0) * @param */ @Internal public class GlobalPartitioner extends StreamPartitioner { private static final long serialVersionUID = 1L; @Override public int selectChannel(SerializationDelegate record) { //只返回0,即只发送给下游算子的第一个task return 0; } @Override public StreamPartitioner copy() { return this; } @Override public String toString() { return "GLOBAL"; } }
2.2 ShufflePartitioner
随机选择一个下游算子实例进行发送。
/** * 随机的选择一个channel进行发送 * @param */ @Internal public class ShufflePartitioner extends StreamPartitioner { private static final long serialVersionUID = 1L; private Random random = new Random(); @Override public int selectChannel(SerializationDelegate record) { //产生[0,numberOfChannels)伪随机数,随机发送到下游的某个task return random.nextInt(numberOfChannels); } @Override public StreamPartitioner copy() { return new ShufflePartitioner(); } @Override public String toString() { return "SHUFFLE"; } }
2.3 BroadcastPartitioner
发送到下游所有的算子实例。
/** * 发送到所有的channel */ @Internal public class BroadcastPartitioner extends StreamPartitioner { private static final long serialVersionUID = 1L; /** * Broadcast模式是直接发送到下游的所有task,所以不需要通过下面的方法选择发送的通道 */ @Override public int selectChannel(SerializationDelegate record) { throw new UnsupportedOperationException("Broadcast partitioner does not support select channels."); } @Override public boolean isBroadcast() { return true; } @Override public StreamPartitioner copy() { return this; } @Override public String toString() { return "BROADCAST"; } }
2.4 RebalancePartitioner
通过循环的方式依次发送到下游的 task。
/** *通过循环的方式依次发送到下游的task * @param */ @Internal public class RebalancePartitioner extends StreamPartitioner { private static final long serialVersionUID = 1L; private int nextChannelToSendTo; @Override public void setup(int numberOfChannels) { super.setup(numberOfChannels); //初始化channel的id,返回[0,numberOfChannels)的伪随机数 nextChannelToSendTo = ThreadLocalRandom.current().nextInt(numberOfChannels); } @Override public int selectChannel(SerializationDelegate record) { //循环依次发送到下游的task,比如:nextChannelToSendTo初始值为0,numberOfChannels(下游算子的实例个数,并行度)值为2 //则第一次发送到ID = 1的task,第二次发送到ID = 0的task,第三次发送到ID = 1的task上...依次类推 nextChannelToSendTo = (nextChannelToSendTo + 1) % numberOfChannels; return nextChannelToSendTo; } public StreamPartitioner copy() { return this; } @Override public String toString() { return "REBALANCE"; } }
2.5 RescalePartitioner
基于上下游 Operator 的并行度,将记录以循环的方式输出到下游 Operator 的每个实例。
举例:
- 上游并行度是 2,下游是 4,则上游一个并行度以循环的方式将记录输出到下游的两个并行度上;上游另一个并行度以循环的方式将记录输出到下游另两个并行度上。
- 若上游并行度是 4,下游并行度是 2,则上游两个并行度将记录输出到下游一个并行度上;上游另两个并行度将记录输出到下游另一个并行度上。
@Internal public class RescalePartitioner extends StreamPartitioner { private static final long serialVersionUID = 1L; private int nextChannelToSendTo = -1; @Override public int selectChannel(SerializationDelegate record) { if (++nextChannelToSendTo >= numberOfChannels) { nextChannelToSendTo = 0; } return nextChannelToSendTo; } public StreamPartitioner copy() { return this; } @Override public String toString() { return "RESCALE"; } }
Flink 中的执行图可以分成四层:StreamGraph ➡ JobGraph ➡ ExecutionGraph ➡ 物理执行图。
- StreamGraph:是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。
- JobGraph:StreamGraph 经过优化后生成了 JobGraph,提交给 JobManager 的数据结构。主要的优化为,将多个符合条件的节点 chain 在一起作为一个节点,这样可以减少数据在节点之间流动所需要的序列化 / 反序列化 / 传输消耗。
- ExecutionGraph:JobManager 根据 JobGraph 生成 ExecutionGraph。ExecutionGraph 是 JobGraph 的并行化版本,是调度层最核心的数据结构。
- 物理执行图:JobManager 根据 ExecutionGraph 对 Job 进行调度后,在各个 TaskManager 上部署 Task 后形成的 “图”,并不是一个具体的数据结构。
而 StreamingJobGraphGenerator 就是 StreamGraph 转换为 JobGraph。在这个类中,把 ForwardPartitioner 和 RescalePartitioner 列为 POINTWISE 分配模式,其他的为 ALL_TO_ALL 分配模式。代码如下:
if (partitioner instanceof ForwardPartitioner || partitioner instanceof RescalePartitioner) { jobEdge = downStreamVertex.connectNewDataSetAsInput( headVertex, // 上游算子(生产端)的实例(subtask)连接下游算子(消费端)的一个或者多个实例(subtask) DistributionPattern.POINTWISE, resultPartitionType); } else { jobEdge = downStreamVertex.connectNewDataSetAsInput( headVertex, // 上游算子(生产端)的实例(subtask)连接下游算子(消费端)的所有实例(subtask) DistributionPattern.ALL_TO_ALL, resultPartitionType); }
2.6 ForwardPartitioner
发送到下游对应的第一个 task,保证上下游算子并行度一致,即上游算子与下游算子是 1 : 1 1:1 1:1 的关系。
/** * 发送到下游对应的第一个task * @param */ @Internal public class ForwardPartitioner extends StreamPartitioner { private static final long serialVersionUID = 1L; @Override public int selectChannel(SerializationDelegate record) { return 0; } public StreamPartitioner copy() { return this; } @Override public String toString() { return "FORWARD"; } }
在上下游的算子没有指定分区器的情况下,如果上下游的算子并行度一致,则使用 ForwardPartitioner,否则使用 RebalancePartitioner,对于 ForwardPartitioner,必须保证上下游算子并行度一致,否则会抛出异常。
//在上下游的算子没有指定分区器的情况下,如果上下游的算子并行度一致,则使用ForwardPartitioner,否则使用RebalancePartitioner if (partitioner == null && upstreamNode.getParallelism() == downstreamNode.getParallelism()) { partitioner = new ForwardPartitioner(); } else if (partitioner == null) { partitioner = new RebalancePartitioner(); } if (partitioner instanceof ForwardPartitioner) { //如果上下游的并行度不一致,会抛出异常 if (upstreamNode.getParallelism() != downstreamNode.getParallelism()) { throw new UnsupportedOperationException("Forward partitioning does not allow " + "change of parallelism. Upstream operation: " + upstreamNode + " parallelism: " + upstreamNode.getParallelism() + ", downstream operation: " + downstreamNode + " parallelism: " + downstreamNode.getParallelism() + " You must use another partitioning strategy, such as broadcast, rebalance, shuffle or global."); } }
2.7 KeyGroupStreamPartitioner
根据 key 的分组索引选择发送到相对应的下游 subtask。
- org.apache.flink.streaming.runtime.partitioner.KeyGroupStreamPartitioner
/** * 根据key的分组索引选择发送到相对应的下游subtask * @param * @param */ @Internal public class KeyGroupStreamPartitioner extends StreamPartitioner implements ConfigurableStreamPartitioner { ... @Override public int selectChannel(SerializationDelegate record) { K key; try { key = keySelector.getKey(record.getInstance().getValue()); } catch (Exception e) { throw new RuntimeException("Could not extract key from " + record.getInstance().getValue(), e); } //调用KeyGroupRangeAssignment类的assignKeyToParallelOperator方法,代码如下所示 return KeyGroupRangeAssignment.assignKeyToParallelOperator(key, maxParallelism, numberOfChannels); } ... }
- org.apache.flink.runtime.state.KeyGroupRangeAssignment
public final class KeyGroupRangeAssignment { ... /** * 根据key分配一个并行算子实例的索引,该索引即为该key要发送的下游算子实例的路由信息, * 即该key发送到哪一个task */ public static int assignKeyToParallelOperator(Object key, int maxParallelism, int parallelism) { Preconditions.checkNotNull(key, "Assigned key must not be null!"); return computeOperatorIndexForKeyGroup(maxParallelism, parallelism, assignToKeyGroup(key, maxParallelism)); } /** *根据key分配一个分组id(keyGroupId) */ public static int assignToKeyGroup(Object key, int maxParallelism) { Preconditions.checkNotNull(key, "Assigned key must not be null!"); //获取key的hashcode return computeKeyGroupForKeyHash(key.hashCode(), maxParallelism); } /** * 根据key分配一个分组id(keyGroupId), */ public static int computeKeyGroupForKeyHash(int keyHash, int maxParallelism) { //与maxParallelism取余,获取keyGroupId return MathUtils.murmurHash(keyHash) % maxParallelism; } //计算分区index,即该key group应该发送到下游的哪一个算子实例 public static int computeOperatorIndexForKeyGroup(int maxParallelism, int parallelism, int keyGroupId) { return keyGroupId * parallelism / maxParallelism; } ...
2.8 CustomPartitionerWrapper
通过 Partitioner 实例的 Partition 方法(自定义的)将记录输出到下游。
public class CustomPartitionerWrapper extends StreamPartitioner { private static final long serialVersionUID = 1L; Partitioner partitioner; KeySelector keySelector; public CustomPartitionerWrapper(Partitioner partitioner, KeySelector keySelector) { this.partitioner = partitioner; this.keySelector = keySelector; } @Override public int selectChannel(SerializationDelegate record) { K key; try { key = keySelector.getKey(record.getInstance().getValue()); } catch (Exception e) { throw new RuntimeException("Could not extract key from " + record.getInstance(), e); } //实现Partitioner接口,重写partition方法 return partitioner.partition(key, numberOfChannels); } @Override public StreamPartitioner copy() { return this; } @Override public String toString() { return "CUSTOM"; } }
比如:
public class CustomPartitioner implements Partitioner { // key: 根据key的值来分区 // numPartitions: 下游算子并行度 @Override public int partition(String key, int numPartitions) { return key.length() % numPartitions;//在此处定义分区策略 } }
- org.apache.flink.runtime.state.KeyGroupRangeAssignment
- org.apache.flink.streaming.runtime.partitioner.KeyGroupStreamPartitioner