SQL统计连续登陆3天的用户(连续活跃超3天用户)
SQL统计连续登陆3天的用户(连续活跃超3天用户)
目录
- SQL统计连续登陆3天的用户(连续活跃超3天用户)
- 1. 数据准备
- 2. 方法一: 差值计算
- 3. 方法二: lead或lag函数
- end
1. 数据准备
-- 数据准备 WITH user_active_info AS ( SELECT * FROM ( VALUES ('10001' , '2023-02-01'),('10001' , '2023-02-03') ,('10001' , '2023-02-04'),('10001' , '2023-02-05') ,('10002' , '2023-02-02'),('10002' , '2023-02-03') ,('10002' , '2023-02-04'),('10002' , '2023-02-05') ,('10002' , '2023-02-07'),('10003' , '2023-02-02') ,('10003' , '2023-02-03'),('10003' , '2023-02-04') ,('10003' , '2023-02-05'),('10003' , '2023-02-06') ,('10003' , '2023-02-07'),('10003' , '2023-02-08') ,('10004' , '2023-02-03'),('10004' , '2023-02-04') ,('10004' , '2023-02-06'),('10004' , '2023-02-07') ,('10004' , '2023-02-08'),('10004' , '2023-02-08') ,('10005' , '2023-02-02'),('10005' , '2023-02-05') ) AS user_active_info(user_id, active_date) )
2. 方法一: 差值计算
-- 1. 对用户数据进行分组,按照活跃日期进行排序(去重:防止有一天有多次活跃记录) SELECT user_id , active_date , ROW_NUMBER() OVER(PARTITION BY user_id ORDER BY active_date) AS rn FROM user_active_info GROUP BY user_id , active_date ;
user_id active_date rn 10001 2023-02-01 1 10001 2023-02-03 2 10001 2023-02-04 3 10001 2023-02-05 4 10002 2023-02-02 1 10002 2023-02-03 2 10002 2023-02-04 3 10002 2023-02-05 4 10002 2023-02-07 5 … … … -- 2. 使用活跃日期和排序rn进行差值计算,得到的日期如果是相等的,就说明活跃日期是连续的 SELECT user_id , active_date , rn , DATE_SUB(active_date,rn) AS sub_date FROM ( SELECT user_id , active_date , ROW_NUMBER() OVER(PARTITION BY user_id ORDER BY active_date) AS rn FROM user_active_info GROUP BY user_id , active_date ) a ;
user_id active_date rn sub_date 10001 2023-02-01 1 2023-01-31 10001 2023-02-03 2 2023-02-01 10001 2023-02-04 3 2023-02-01 10001 2023-02-05 4 2023-02-01 10002 2023-02-02 1 2023-02-01 10002 2023-02-03 2 2023-02-01 10002 2023-02-04 3 2023-02-01 10002 2023-02-05 4 2023-02-01 10002 2023-02-07 5 2023-02-02 … … … … -- 3. 按照user_id和sub_date 进行分组求和,筛选出连续登陆天数大于3天的用户 SELECT user_id , MIN(active_date) AS begin_date , MAX(active_date) AS end_date , COUNT (1) AS login_duration FROM ( SELECT user_id , active_date , rn , DATE_SUB(active_date,rn) AS sub_date FROM ( SELECT user_id , active_date , ROW_NUMBER() OVER(PARTITION BY user_id ORDER BY active_date) AS rn FROM user_active_info GROUP BY user_id , active_date ) a ) b GROUP BY user_id , sub_date HAVING login_duration >= 3 ;
user_id begin_date end_date login_duration 10001 2023-02-03 2023-02-05 3 10002 2023-02-02 2023-02-05 4 10003 2023-02-02 2023-02-08 7 10004 2023-02-06 2023-02-08 3 3. 方法二: lead或lag函数
-- 1. 将active_date 上抬2行,不存在默认为'0'(计算连续活跃3天以上的, 上抬2行,n天上抬n-1行)(去重:防止有一天有多次活跃记录) SELECT user_id , active_date , lead(active_date , 2 , 0) OVER(PARTITION BY user_id ORDER BY active_date) AS lead_active_date FROM user_active_info GROUP BY user_id , active_date
user_id active_date lead_active_date 10001 2023-02-01 2023-02-04 10001 2023-02-03 2023-02-05 10001 2023-02-04 0 10001 2023-02-05 0 10002 2023-02-02 2023-02-04 10002 2023-02-03 2023-02-05 10002 2023-02-04 2023-02-07 10002 2023-02-05 0 10002 2023-02-07 0 … … … -- 2. 过滤筛选出, lead_active_date 与 active_date 差值为2的, 差值2 -> 连续活跃了3天 SELECT user_id , active_date , lead_active_date FROM ( SELECT user_id , active_date , lead(active_date , 2 , 0) OVER(PARTITION BY user_id ORDER BY active_date) AS lead_active_date FROM user_active_info GROUP BY user_id , active_date ) a WHERE lead_active_date != '0' AND DATEDIFF(lead_active_date , active_date) = 2
user_id active_date lead_active_date 10001 2023-02-03 2023-02-05 10002 2023-02-02 2023-02-04 10002 2023-02-03 2023-02-05 … … … -- 3. user_id 去重, 得到连续活跃天数>=3天的用户 SELECT user_id FROM ( SELECT user_id , active_date , lead_active_date FROM ( SELECT user_id , active_date , lead(active_date , 2 , 0) OVER(PARTITION BY user_id ORDER BY active_date) AS lead_active_date FROM user_active_info GROUP BY user_id , active_date ) a WHERE lead_active_date != '0' AND DATEDIFF(lead_active_date , active_date) = 2 ) b GROUP BY user_id
user_id 10001 10002 10003 10004 end
- end
相关阅读:
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理!
部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!