☞GO和KEGG富集倍数(Fold Enrichment)如何计算 enrich factor qvalue

2024-06-04 10309阅读

前面我们简单介绍过ggplot2画KEGG富集柱形图,其实GO富集结果的展示相对于KEGG来说要复杂一点点,因为GO又进一步可以划分成三个类。

BP:biological process,生物学过程。

MF:molecular function,分子功能。

CC:cellular component, 细胞成分。

因此在画图的时候,我们需要将这三类给区分开来。下面分别用了三种不同的方式来展示GO富集分析的结果。

☞GO和KEGG富集倍数(Fold Enrichment)如何计算 enrich factor qvalue 第1张

图1:横轴为富集到每个GO条目上面的基因数目

☞GO和KEGG富集倍数(Fold Enrichment)如何计算 enrich factor qvalue 第2张

图2: 横轴为GeneRatio

☞GO和KEGG富集倍数(Fold Enrichment)如何计算 enrich factor qvalue 第3张

图3:横轴为Fold enrichment(富集倍数)

下面我们结合富集分析的结果表,来分别解释一下这三张图中横坐标的具体含义。

☞GO和KEGG富集倍数(Fold Enrichment)如何计算 enrich factor qvalue 第4张

首先来看看这张表中每一列所代表的含义

ONTOLOGY:区分是BP,MF还是CC
ID:具体的GO条目的ID号
Description:GO条目的描述
GeneRatio:这里是一个分数,分子是富集到这个GO条目上的gene的数目,
            分母是所有输入的做富集分析的gene的数目,可以是差异表达
            分析得到的gene
BgRatio:Background Ratio. 这里也是一个分数,分母是人的所有编码蛋白的
        基因中有GO注释的gene的数目,这里是19623个,分子是这19623个
        gene中注释到这个GO条目上面的gene的数目
pvalue:富集的p值
p.adjust:校正之后的p值
qvalue:q值
geneID:输入的做富集分析的gene中富集到这个GO条目上面的具体的
        gene名字
Count:输入的做富集分析的gene中富集到这个GO条目上面的gene的数目

这张表里面没有提到富集倍数(fold enrichment)

fold enrichment = GeneRatio / BgRatio

那么我们就很容易理解上面三张图的横坐标了,分别为Count,GeneRatio和Fold enrichment。

那么问题来了,既然这张表里面没有Fold enrichment,那么我们如何计算富集倍数呢?

下面小编给大家介绍三种方法来计算Fold enrichment,任君挑选

1.利用eval直接做计算

kegg=read.csv("KEGG-enrich.csv",stringsAsFactors = F)
​
enrichment_fold=apply(kegg,1,function(x){
  GeneRatio=eval(parse(text=x["GeneRatio"]))
  BgRatio=eval(parse(text=x["BgRatio"]))
  enrichment_fold=round(GeneRatio/BgRatio,2)
  enrichment_fold
})

2.利用strsplit按/分割成分子和分母

kegg=read.csv("KEGG-enrich.csv",stringsAsFactors = F)
fenshu2xiaoshu

    免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

    目录[+]